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Abstract. When porting sequential application_ to parallel computer architec-
tures, the program developer will typically go through several cycles of source

code optimization and performance analysis. We have started a project to de-

velop an environment where the user can jointly navigate through program

structure and performance data information in order to make efficient optimiza-

tion decisions. In a prototype implementation we have interfaced the CAPO

computer aided parallelization tool with the Pazaver performance analysis too[.

We describe both tools and their interface and give an example for how the in-

terface helps within the program development cycle of a benchmark code.

1 Introduction

During the last decades a large amount of time and money has been spent on the de-

velopment of large-scale scientific applications which expose an insatiable appetite for

floating point operations per second. High performance computer architectures have

evolved to satisfy this demand, however, the structure of the existing codes is not

always suitable to fully exploit the parallelism provided by' the hardware. Considering

the enormous investment in these codes and the fact that scientific applications are a

niche market, there is a strong incentive not to re-implement the applications from

scratch, but rather employ a conversion process to produce versions of existing codes

that are optimized for the current most powerful computer architecture.

In this paper we will focus on shared memory parallel computer architectures which

provide multiple processing units and a globally shared address space. High perform-

ance is achieved by multithreaded execution of loops. If the iterations of a loop can be

carried out independently, each thread executes a subset of the iteration space in paral-

lel. In order to determine whether a loop can be parallelized the array indices have to

be analyzed for potential data dependencies. The technique of dependence analysis is

well understood [19] and has been used for compiler optimizatkm. Ideally the corn-
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pilerwoulddetermineif parallelizationofaloopispossible,makingtheexploitation
oftheparallelhardwaretransparenttotheuser.Inpractice,however,thequestionof
whetheraloopcanbeexecutedinparallelisdifficulttoanswereitherduetothecom-
plexityofthecodeorthefactthatitdependsonvaluesthatareonlyknownatruntime.
Byitsnaturethecompilerhastobeconservativeandhastoassumetheexistenceofa
dependenceif it cannotproofotherwise.Thereforeparallelizationcompletelyleftto
compilerwilloftenresultsinpoorperformance.

Mostcompilersforsharedmemoryparallelarchitecturessupportparallelizationin
formof compilerdirectivessuchasthoseprovidedbytheOpenMPstandard[13].
Thisallowstheusertoindicatetothecompilerinformationsuchaswhichloopsare
parallelandwhethervariablesareprivatetoathreadorsharedamongthethreads.The
programdeveloperhastodeterminewheretoinsertthedirectivesandhastospecify
thescopeofthevariables.Althoughthisismucheasierthanexplicitlywritingmulti-
threadedcode,thetaskisstilltimeconsuminganderrorprone.

TheCAPO[6]parallelizationsupporttoolwasdevelopedattheNASAAmesRe-
searchCentertoaidtheprogramdeveloperinthistask.CAPOautomatestheinsertion
ofOpenMPdirectivesintoexistingFortrancodesandallowsuserinteractionforan
efficientplacementofthedirectives.Whenparallelizinganexistingapplication,the
programdeveloperwillgothroughseveralcyclesofplacementofOpenMPdirectives
intothecode,analysisoftheperformance,andoptimization.Totacilitatethisprocess
wehaveinterfacedCAPOwithaperformanceanalysistool.Ourgoalistoprovidethe
userwithanenvironmentwherehecanjointlynavigatethroughprogramstructureand
pertbrmancedataandcorrelatethetwo.Thisrequiresahighlevelofflexibilityand
extensiveanalysiscapabilitiesonbehalfoftheperformanceanalysistool.

Paraver[14]wasdevelopedatCEPBA,UPCtoprovidetheuserwithmeanstoob-
tainaqualitativeglobalperceptionof theapplicationbehavioraswellasadetailed
quantitativeanalysisof programperformance.Paraverallowstheuserto visually
inspecttracefilescollectedduringprogramexecution.Optionallyavailablewiththe
ParaverdistributionistheOMPItracemodule[12],whichallowsdynamicinstrumen-
tationandtracingofapplicationswithmultiplelevelsofparallelism.

TheCAPO-Paraverinterfaceisafirststeptowardsthedevelopmentofaprogram-
mingenvironmentforscientificapplications.Thepurposeofthispaperistopresent
thebasicmotivationandthegeneralideaofhowthetoolsshouldbeintegrated.We
alsodescribeourinitialprototypeimplementationandgiveademonstrationof its
potentialuse.

Therestof thepaperisstructuredasfollows:In Sections2 and3 wedescribe
CAPOandParaver.WediscusstheinterfacebetweenthetoolsinSection4andgive
anexampleparallelizationandoptimizationsessioninSection5.In Section6 we
discussrelatedworkanddrawourconclusioninSection7wherewealsoelaborateon
ourfutureplans.



2 The CAPO Parallelization Support Tool

The main goal of developing parallelization support tools is to eliminate as much of

the tedious and sometimes error-prone work that is needed for manual parallelization

of serial applications but leaving the possibility for user interaction to allow for opti-

mization.

2.1 The CAPO Parallelization Process

CAPO [6] was developed to automate the insertion of OpenMP compiler directives

with nominal user interaction. This is achieved largely by use of the very accurate

interprocedural analysis from CAPTools [4] developed at the University of Greenwich

which provides a fully interprocedural and value-based dependence analysis engine.

To exploit loop level parallelism CAPO goes through the following three stages:

1. Identification of parallel loops and parallel regions based on an extensive depend-

ence analysis.

2. Optimization of parallel regions and parallel loops achieved by merging together

parallel regions where there is no violation of data usage and inserting the

NOWAIT clause on successive parallel loops if possible.

3. Code transformation and insertion of OpenMP directives where the call graph is

traversed to place OpenMP directives within the code and the scope of the vari-

ables is defined such as SHARED, PRIVATE, and REDUCTION.

More details on the CAPO parallelization process can be found in [6].

2.2 The Knowledge Data Base

The results of the dependence analysis performed during a CAPO session are stored in

a data base. The data base contains the dependence graph and a list of unresolved

questions that occurred during the analysis. Unresolved questions indicate conserva-

tively defined dependencies, often due to unknown information about values of vari-

ables. The user has the possibility to browse the list of questions and provide asser-

tions to make a more precise dependence analysis possible.

2.3 The CAPO Directives Browser

The CAPO directives browser is designed to display information gathered during the

parallelization. For instance, the browser provides information on the reasons for

loops to be parallel or serial and the relevant variables. For each subroutine the user

can retrieve information about the loops it contains. The browser also provides inter-

faces for the user to declare certain variables as shared or private or to explicitly re-

move dependences.



3 The Paraver Visualization and Analysis System

The Paraver system allows performance analysis of process level, thread level and

hybrid parallel programs. It consists of two major components: A tracing package and

a graphical user interface to visually examine the traces which includes an analysis

module for the calculation of various statistics.

3.1 The OMPItraee Instrumentation Module

The Paraver distribution optionally provides its own tracing package, OMPItrace.

Depending on the computer system, OMPItrace allows for the dynamic instrumenta-

tion of certain runtime libraries. It allows for tracing of programs with multiple proc-

esses and multiple threads. Examples for OpenMP related information that is auto-

matically traced on our development platform (SGI Origin 3000) are:

* entry and exit of OpenMP runtime library routines,

• entry and exit of compiler generated routines containing the body of parallel loops,

• two hardware counters

• the state of a thread (running, idle, synchronization, or in fork/join overhead).

User routines require manual instrumentation to be traced.

3.2 Trace Views and Configuration Files

The trace collected during the execution of a program contain a wealth of information,

which as a whole is overwhelming. The user needs to filter infi_rmation to gain visibil-

ity of a critical subset of the data. This can be done through timeline graphical dis-

plays or by histograms and statistics. Paraver provides great flexibility in composing

displays of trace data. The Paraver object model is structured in a three level hierar-

chy: Application, Task, and Thread. Each record of trace is tagged with these three

identifiers. The timelines can be displayed at the level of individual threads but also at

the level of tasks. In the latter case, the values for each thread are combined to pro-

duce a value for the task. A user can specify through the Paraver GUI how to compute

a given performance index from the records in the trace and then save it as a configu-

ration file. These configuration files can then be used to immediately display a view of

the selected performance index.

3.3 The Paraver Analysis Module

In general performance analysis starts by examining some basic metrics and statistics

such as timelines and profiles of user functions. Further investigation may require

information about hardware counters (e.g. cache misses or instructions per cycle) in

terms of an absolute value, the rate per time, or the ratio of two counters. An extensive

analysis will often raise the need to define new detailed metrics. The quantitative

analysis module in Paraver allows the display of profile data for each thread in the



formoftablesorhistograms.Italsoprovidesmechanismsto correlate different types

of profile data with each other. Typical statistics such as average, minimum, maximum

values or standard deviation can be Computed for any section of the timeline views. It

provides great flexibility in defining and calculating new performance metrics which

results in a very powerful profiling capability.

4 The CAPO-Paraver Interface

An important step in this process is to determine, whether the directives have been

placed for efficient parallelization. When working with large application packages the

program developer is confronted with the question which parts of the code to focus

on. We are trying to address this question by the use of trace information and an inter-

face to a performance analysis tool. Although there are many aspects to performance

optimization u'e will focus at this point on the parallelization aspect. The design of

the interface between computer aided parallelization and performance analysis is

summarized in Figure 1.

Selective

Instrumentation

Fig. 1: The CAPO-Paraver Interface. The dashed lines indicate that our prototype

implementation requires user interaction.

4.1 Selective Source Code Instrumentation

We have extended the source code transformation capability of CAPO to automati-

cally insert calls to the OMPItrace library. The OMPItrace module allows for dynamic

tracing of parallel loops and parallel regions, but does not atttomatically trace entry

and exit to user routines on our development platforms (SGI Origin 3000)• Even

though the tracing of user level routines is possible on some platforms, it may not

always be desirable to automatically trace all of the subroutines because of large in-



strumentationoverhead.Inourprototypeinstrumentationweusethefollowingsimple
heuristicstoinsertcallstothetracinglibrary.Weautomaticallyinstrument:
• routinesthatarenotcontainedwithinaparallelregionoraparallelloop,
• routineswhichcontainatleastoneDOloop.
DuringtheselectiveinstrumentationprocessCAPOgeneratesafilecontainingcontrol
informationwhichwillbeusedbyParavertorelatetheperformancetracedatawith
theroutinenames.Theinstrumented,parallelizedcodecannowbecompiledandrun
toobtainatracefilewhichcanbeprocessedbyParaver.

4.2 Display of Performance Metrics

We have designed a set of configuration files which show statistics related to the in-

formation displayed in the directives browser. The CAPO directives browser presents

the user with a list of routines and means to examine the loops within the routines. To

determine where to focus his efforts on, the user will need to know:

• Where is the time spent'?

• Is the time spent "efficiently"?

To address these questions the user has the possibility to invoke Paraver from

within CAPO. Paraver will start up, loading the previously generated trace file. The

first view presents the user with a diagram containing the percentage of time that each

of the routines took of the total traced time. The time is presented on a task level,

averaging over all threads. Reported is the exclusive time for a function call.

To give an indication of the quality of the parallelization we display the percentage

of useful time for each thread. By useful time of a thread we mean time spent not in

fork/join operations, blocked or idle time. The Paraver analysis module allows us to

calculate the percentage of useful time for each thread within the instrumented rou-

tines, as well as their mean and standard deviation. This view gives a first basic indi-

cation on the quality of the parallelization. The average useful time for each thread

should be high and the standard deviation low.

In a third view the user is presented with the average time that each parallel loop or

parallel region takes within a selected routine. CAPO automatically generates control

information which is then used by Paraver for calculating the performance metrics and

their display.

This set of standard views enables even the novice Paraver user to determine where

to focus on during the parallelization process. An expert user has the full Paraver

capability available for further investigation.

4.3 CAPO-Paraver Feedback Mechanism

CAPO supports querying the performance trace by generating control information and

invoking Paraver. In our prototype implementation it is required that the user visually

inspects the performance metrics calculated by Paraver and then provides feedback to

CAPO. This is indicated by the dashed lines in Figure 1. Our goal is to have CAPO

query Paraver for performance metrics and retrieve the information without user inter-



action.Wearecurrentlyworkingonanon-GUIbasedParaderwhichwillallowre-
trievingParaverperformancemetricsinbatchmode.Withthis,CAPOwillbeableto
automatical]yqueryParaverandcorrelatetheoutcome of the query with its loop

analysis information. It might then be possible to automatically optimize the code or

to prompt the user for assertions, e.g. to eliminate conservative dependences. At the

very least the user can be pointed to specific performance problems. Our current pro-

totype implementation allows us to conduct experiments to gain experience on what

the nature of the queries should be and how the outcome should affect the optimiza-

tion process. The use of Paraver to provide profile data has the advantage that at any

point in time the user can enter in the process, inspect the melric requested by CAPO

and carry out a more elaborate analysis.

5 An Example Parallelization and Optimization Session

To demonstrate a parallelization session using the CAPO-Paraver interface we con-

sider the BT benchmark from the NAS Parallel Benchmarks (NPB) [2]. The BT

benchmark solves three systems of equations resulting from an approximate factoriza-

tion that decouples the x, y and z dimensions of the 3-dimensional Navier-Stokes

equations. These systems are block tridiagonal consisting of 5x5 blocks. Each spatial

dimension is alternatively swept.

The development platform is an SGI Origin 3000. To develop a parallel version of

BT, the user starts a CAPO session loading the source code. Then CAPO performs the

parallelization and generates the database. The user saves the CAPO generated source

code containing OpenMP directives and the selective instrumentation as described in

Section 4. Compiling and running the instrumented OpenMP code generates a per-

formance trace file. In our demonstration the application runs on 4 threads.

Now Paraver is invoked via the link provided by the CAPO user interface. Paraver

will load the performance trace file and a configuration file which calculates the per-

centage of time spent in each of the instrumented routines. The fragment of a snapshot

is shown in Figure 2.

0,00 us

Fig. 2: Fragment of an analysis histogram displaying the percentage of time.

The useful time for each thread can be displayed by loading a second configuration

file into Paraver, which is shown in Figure 3. The value of 0.96 for thread 1 in routine

z_solve indicates that thread 1 was running user code 96% of the time. The value of

0.05 for thread 2 in routine z_sol're indicates that the thread was running only 5%



ofthetime.Routinesmatmul_sub and matvec_sub are obviously executed by

only one of the 4 threads. The imbalance in useful time of the threads is an indicator

for inefficient parallelization. All of these routines are major time consumers as can be

seen in Figure 2. Selecting for example routine ::solve in the directives browser

and inspecting the parallelized loops reveals that the inner loops of the routine were

chosen for parallelization (see Figure 4). Routines matmul_sub and matvec sub

are called from within routine zsolve, outside of the parallelized loop. For the

outer loops, dependences had to be assumed.

_-A.i. S.m_,ic_ J Sl....c Av,,;_0v_Q.-_j .e¢.,i,..: o.oo.,
End lime: 5494025.60 us

Control Window: U_er f_nction "_ D_laWindow: user,Jr --J j
,,,,,,,,

co_pute _h_ add z_Iolv( _ 5olv( xsoive lh_J_it _atvt¢_$_ m&t_ul_$t_

T_m_ I I O: _S.o o.o,_ o.o4 o o4 o o o

T_ : 1_ O.'_ 0:S?: 004 0.04 004 0 0 0

Total 2.97 2.77 _.03 1.09 I 06 ] 1 1

Average 0 74 0 69 0.27 0.27 _ 26 025 025 0 25

Haxi_um 0 82 0 8_ 0.96 0.96 0 92 1 1 1

H in_um 0.g6 0,5g 0.04 0.04 0 04 0 0 0

5tde_ 0 07 0.13 039 0.39 0 38 043 0.43 0,43

I

Fig. 3: Paraver analysis results showing the useful time per routine for each thread.

Darker shading indicates a higher percentage of useful time.

Inspecting the knowledge database (see Figure 4) shows that there are conservative

dependences because the values of entries in gridpoints are not known at compile

time. These are the number of grid points for each dimension which are provided as

input. They determine the loop lengths of the outer loops surrounding the paralle]ized

loop. Since the user knows that the number of grid points is greater than 5 for each

dimension, he can provide this information and repeat the analysis. The OpenMP

directives are now placed on the outer loops of the solver routines. Note that the pro-

vided user knowledge benefits all three solver routines. Saving, compiling, and run-

ning the new instrumented OpenMP code results in a much better balance of useful

time between the threads which is reflected in an overall performance increase of the

benchmark.

6 Related Work

There are a number of commercial and research parallelizing compilers and tools for

automatic parallelization that have been developed over the years.
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Fig. 4: The CAPO directives browser and knowledge database.

The SUIF Explorer [8] developed at Stanford University is an interactive paralleli-

zation tool based on the SUIF [17] compiler. It performs extensive static dependence

analysis and also includes a set of dynamic analyzers to provide runtime information.

Runtime information includes checking dependencies and time profiles for loops and

routines• The user can provide assertions via a graphical user interface. The most

notable difference to our approach is that by interfacing to a full performance analysis

system like Paraver, we have more performance metrics available than just the time.

This allows us a more flexible and detailed analysis and greater opportunity to detect

performance problems.

Commercial products for interactive parallelization are for example ForgeExplorer

[l] and the KAP/Pro toolkit [7]. Both provide means to display dependence analysis

information but do not allow extensive user interaction the way CAPO does.

An example for a commercial product for performance analysis is Vampir [16]

which allows tracing and analysis of MPI codes. The CAPTooIs system provides an

interface for generating VAMP1R traces and invoking VAMPIR from within CAP-

Tools for performance analysis of message passing applications.

The Automated Instrumentation and Monitoring System (AIMS) [20] was devel-

oped at NASA Ames. It consists of number of components to facilitate the perform-

ance analysis of message passing programs but does not support OpenMP.

Paradyn [10], which is developed at the University of Madison, is a performance

measurement tool for parallel and distributed programs. It includes dynamic code

instrumentation and automatic searches for performance bottlenecks.



AgeneralperformancemodelforOpenMPisproposedin[11].Themodelallows
userfunctionsandarbitrarycoderegionstobemarkedandperformancemeasure-
mentstobecontrolledusingnewOpenMPdirectives.Performancelibrariesbasedon
thismodelhavebeendevelopedfortheTAU(TuningandAnalysisUtility)perform-
anceanalysisframework([11],[15])andtheEXPERTautomaticeventtraceanalyzer
[18].

TheadvantageParaveroffersisthegreatflexibilityincomputingperformancein-
dicesandstatistics.Thisallowsabroadexplorationofmetricsofinterestandtheir
correspondinginfluenceontheparallelizationchoices.

7 ConclusionsandFuturePlans

WehaveinterfacedtheCAPOcomputeraidedparallelizationtoolwiththeParaver
performanceanalysissystemto supporttheprogramdeveloperwhenparallelizing
existingsequentialcodes.Wehaveusedthestaticanalysisinformationavailablefrom
theCAPOtoinstrumentthecode.Byemployingthestatisticalanalysismodulefrom
Paraver,performancemetricsforcriticalpartsofthecodecanbecalculatedanddis-
playedtotheuser.WehaveshownhowtheCAP()userinterfacedisplaysloopanaly-
sisinformationandtheperformancestatisticsavailablefromParavertopointtheuser
toparallelizationproblems.

Asmentionedearlier,wearecurrentlyworkingonthedesignofanon-graphicalin-
terfaceto theParaveranalysismoduletobeusedbyCAPOdirectly,withoutuser
interaction.ManycommonproblemscouldbedetectedbyCAPOautomaticallyand
correlatedtotheloopanalysisinformationandtheknowledgedatabase.A highstan-
darddeviation,forexample,in theusefulthreadtimeisoftenanindicatorthatan
innerloopwithina loopnesthasbeenparallelized.InmanycasesCAPOmightbe
abletodeterminethatthereasonforthisisaconservativedependenceintheouter
loop.If thereasonismissinginformationforavariablevalue,CAPOcanpromptthe
userforanassertion.Anotheropportunityis theautomaticdetectionof workload
imbalancewithinaparallelloopwhichcanbeimprovedbychangingtheschedulingof
theloopiterationsfromstatictodynamic.Wealsoplantoaddressscalabilityissues
byautomaticallycomparingtracesfordifferentnumbersofthreads.

It isneedlesstosaythattheperformanceproblemsin full-scaleapplicationswill
notallbeabletobesolvedautomatically.Atthispointit isstillnotclearwhereto
drawthelinebetweenautomatedanduserguidedresponsibilities.Byexperimenting
withourprototypeimplementationwehopetobeabletoidentifymoreandmoretasks
thatcanbeautomated.Ourapproachistosuccessivelydevelopanenvironmentwhere
therepetitive,cumbersomeanderror-pronetasksareleftto thetools,allowingthe
usertofocusonthetasksthatrequireingenuity.Thiswillhelptoreducethedevelop-
merittimeand/orincreasethequalityofthegeneratedcode.
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